Fast Alternating BiDirectional Preconditioner for the 2D High-Frequency Lippmann--Schwinger Equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Alternating BiDirectional Preconditioner for the 2D High-Frequency Lippmann-Schwinger Equation

This paper presents a fast iterative solver for Lippmann-Schwinger equation for highfrequency waves scattered by a smooth medium with a compactly supported inhomogeneity. The solver is based on the sparsifying preconditioner [63] and a domain decomposition approach similar to the method of polarized traces [64]. The iterative solver has two levels, the outer level in which a sparsifying precond...

متن کامل

Sparsifying Preconditioner for the Lippmann-Schwinger Equation

The Lippmann–Schwinger equation is an integral equation formulation for acoustic and electromagnetic scattering from an inhomogeneous medium and quantum scattering from a localized potential. We present the sparsifying preconditioner for accelerating the iterative solution of the Lippmann–Schwinger equation. This new preconditioner transforms the discretized Lippmann–Schwinger equation into spa...

متن کامل

Sparsify and sweep: an efficient preconditioner for the Lippmann-Schwinger equation

This paper presents an efficient preconditioner for the Lippmann-Schwinger equation that combines the ideas of the sparsifying and the sweeping preconditioners. Following first the idea of the sparsifying preconditioner, this new preconditioner starts by transforming the dense linear system of the Lippmann-Schwinger equation into a nearly sparse system. The key novelty is a newly designed perfe...

متن کامل

Direct solution of the three-dimensional Lippmann–Schwinger equation

A standard technique for solving three-dimensional momentum-space integral equations in scattering theory is their transformation into one-dimensional equations in terms of partial waves. However, for some scattering systems where a large number of partial waves contribute this technique is not efficient. In this work we explore the alternative approach of solving these equations directly witho...

متن کامل

The Time Domain Lippmann-Schwinger Equation and Convolution Quadrature

We consider time domain acoustic scattering from a penetrable medium with a variable sound speed. This problem can be reduced to solving a time domain volume Lippmann-Schwinger integral equation. Using convolution quadrature in time and trigonometric collocation in space we can compute an approximate solution. We prove that the time domain Lippmann-Schwinger equation has a unique solution and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2016

ISSN: 1064-8275,1095-7197

DOI: 10.1137/16m1064660